If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+25t-200=0
a = 2; b = 25; c = -200;
Δ = b2-4ac
Δ = 252-4·2·(-200)
Δ = 2225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2225}=\sqrt{25*89}=\sqrt{25}*\sqrt{89}=5\sqrt{89}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-5\sqrt{89}}{2*2}=\frac{-25-5\sqrt{89}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+5\sqrt{89}}{2*2}=\frac{-25+5\sqrt{89}}{4} $
| 2/9=m/9 | | -7(7+x)=-84 | | 8x-2=2+8x | | 1=v(20) | | 40=x+2 | | -40-8c=2c | | 13x+18=11x+26 | | 5x+6x-19=38-8x | | -130=10(p-1) | | x-(-14)=22 | | 9g+4=13 | | 2k=2k−5 | | 2(r+10)+-3=1 | | v/18=-12 | | 3x3-21x2+36x=0 | | 2k=2k-5 | | 24o-32=-6o+118 | | v/18=12 | | 3x-4+3x=-28 | | -7-2h+15h=18 | | 24o-32=6o+118 | | 5w-3=-32 | | -5/2+2/7u=-7/3 | | 14-6a=-9a+6 | | 3(y-10)+2=-1 | | 12=7x+6-7x | | (10-3)m=0 | | -9a=7-6a | | 35h+25=135+25h | | -1/4=y/12 | | t+-3=-4 | | 115=x-2 |